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Abstract-A method is introduced for determining the critical initial imperfection of discretized
structures that decreases the load-bearing capacity most rapidly. The effects of imperfections on
simple critical points, such as limit points of loads and simple bifurcation points, are theoretically
investigated based on the idea of the Lyapunov-Schmidt decomposition developed in bifurcation
theory. Imperfection sensitivity varies with the types of points. Nonetheless critical imperfection
paltern is expressed in the same formula regardless of the types. Among various imperfections, the
most influential can be found in a quantitative manner. The validity and the usability of the proposed
method are illustrated through its application to simple example structures.

I. INTRODUCfION

The load-bearing capacity of a real structure is highly sensitive to imperfections to which
the members and materials are all subjected. This is particularly the case for structures
undergoing bifurcation buckling, such as domes and shells (Hutchinson and Koiter, 1970).
In the design of such structures, it is preferable to consider the "worst" imperfection that
reduces the load-bearing capacity most rapidly.

Various techniques have been proposed to determine such critical imperfections.
Thompson and Hunt (1973) obtained the imperfection sensitivity of a multi-degree-of.
freedom system with a single imperfection parameter by applying the perturbation to the
total potential energy function ofthe system. Hunt (1977) and Niwa et al. (1981) combined
this approach with the catastrophe theory to determine imperfection sensitivity. Elishakoff
(1988) chose initial imperfections of shells with known probabilistic properties, and lind­
berg (1988) chose imperfections of the structures subjected to dynamic pulse buckling based
on white noise; their critical loads for these imperfections are determined through numerical
and/or experimental studies. Conbescure (1986) used the eigenmode obtained from elastic
bifurcation analysis as the worst imperfection, based on the relevant observation that the
eigenmode was well known to be the imperfection which would increase most rapidly.

Determining such a critical imperfection, however, remains open despite these works.
Nishino and Hartono (1989) stated, "all previous works on the effect of imperfection dealt
mostly with the effect ofa given mode ofimperfection", referring to, e.g., Rosen and Schmit
(1979) and Kam and Lee (1986). Conventionally, imperfections have been selected mainly
on a trial-and-error basis with one's experience and engineering sense. The lack ofa method
for determining the most undesirable imperfection has prevented the accurate evaluation
of load-bearing capacities of dome and shell structures.

In order to address this problem, the authors introduce in this paper a method for
determining the worst imperfection of elastic discretized structures that is applicable to
non-degenerate simple critical points. The load-bearing capacity of an elastic structure is
governed by critical points on load versus displacement relationships (equilibrium paths)
which are obtained by solving the geometrically non-linear equilibrium equations. For
realistic structures, these equations involve a large number of variables and are quite
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complex so that a direct implementation of imperfections in general is difficult. However,
by means of the Lyapunov-Schmidt decomposition in bifurcation theory (see, e.g., Sattinger,
1979; Golubitsky and Schaeffer, 1985), the complex equations are decomposed into a small
number of bifurcation equations and the remaining equations; if a solution to the former
is obtained, the other equations can be solved uniquely by the implicit function theorem.
In particular, in the neighborhood of a simple critical point, equilibrium equations reduce
to a single bifurcation equation. The critical imperfection is to be determined from the
bifurcation equation so that the load-bearing capacity decreases most rapidly.

The method proposed is employed to evaluate the influence of imperfections on simple
example structures in order to assess its validity and applicability. The worst imperfection
pattern and imperfection sensitivity are determined in the neighborhood of various kinds
of simple critical points, including: the limit (stationary) point of the loading parameter,
asymmetric bifurcation point, and stable- and unstable-symmetric bifurcation points. A
suggestion toward future studies concludes this paper.

2. AN ILLUSTRATIVE EXAMPLE

Before presenting the general theory in Section 3, we will demonstrate our general
approach by using a simple example. Consider the non-shallow truss arch in Fig. I, whose
load-bearing capacity is governed by an unstable-symmetric bifurcation point A as in
Fig. 2.

The equilibrium under a verticalloadfis described by

f(~) = (i:.) = [,~ EA'(I/L'-I/~')(X-X')] ,

L EAj(lIL;-IIL;)(y-y;)
;= I

(I)

where

L - {( )2 ( )2} 1/2 L- - {( )2 ( )2} li2 • - I 21- X3- X I + Y3-YI , 1 - X-XI + Y-YI ,1-"

and EA I expresses the product of Young's modulus and the cross-sectional area of the ith
member (i = 1,2); (x;,Y;) is the initial location of the ith node (i = 1,2, 3); and (x, y) the
location of node 3 after displacement. By solving eqn (1), we have obtained the load versus
displacement curves (equilibrium paths) drawn in solid lines in Fig. 2. The bifurcation point
A gives the load-bearing capacityfc° = 0.24776EA at (x~,y~) = (0,0.44735).

Suppose that we are interested in the change.1c = fc -fc° of the load-bearing capacity
fc due to small imperfections (i.e. discrepancies from the nominal values given in Fig. I) of
(x;,Y;) (i = 1,2,3) and EA; (i = 1,2).

(b) f

{e}

{a}

(-1.1) (1.1)

Fig. I. Two-bar truss arches. (a) Shallow arch, (b) non-shallow arch, (c) imperfect arch.
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fig. 2.fversus x curves of the non-shallow arch (unstable-symmetric bifurcation point).

If we introduce the imperfection parameter vector
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we have v = VO = ( - 1,3, 1,3,0,0, EA, EA)T for the "perfect" system shown in Fig. 1, where
(.)T means the transpose of a vector. Let us further write v as

v = vO+ed,

to distinguish the direction d and the magnitude IeIof an imperfection.
For a fixed direction, say,

d = (-0.73685, -0.67606, -0.73685,0.67606, 1,0,EA, -EA)T, (2)

and various small values of lei, we have computed the equilibrium paths (indicated by
broken lines in Fig. 2). Thus when d is kept fixed, the load-bearing capacityIe is determined
bye. It is known as the two-thirds power law for unstable bifurcation points (see, e.g.,
Koiter, 1945; Thompson and Hunt, 1973) that, when e is small,

(3)

with a non-negative coefficient C(d) depending on d.
Our main concern in this paper is to determine the worst direction of the imperfection

vector which causes the maximum change (decrease) of the load-bearing capacity. To be
more precise, we may formulate this problem as follows. First we assume that the imper­
fection direction vector d is to be normalized as

with respect to a weight matrix W. In the present example we may choose, e.g.,

W = diag (1,1,1,1,1,1, 1j(EA)2, 1j(EA)2).

Then our problem is to find such d that maximizes the coefficient C(d) in eqn (3).

(4)

(5)
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In the rest of this section we will briefly illustrate our method of analysis using this
example. The reader may also proceed first to the general theory in the next section and
return occasionally to this illustration.

The tangent-stiffness matrix is given by

(6)

where
2

I n = L EA;{I/L;-(Y-Yi)2/L/};
;= I

2

J,y = L EA;{I/L;-(x-x;)2/Ln;
;= I

2

J ty = Jyx = L EA;(y- y;)(x-x;)/L/.
i= I

The critical point (!c,xc,Yc) is determined by eqn (I) and

detJ = 0.

At the bifurcation point A, where (!c, xoYc) = (!co, x~,yco), the tangent-stiffness matrix J is
singular with rank J = 1.

To investigate the local properties of eqn (I) around A, we consider the increment
from the critical points as

(7)

Since Jyy ~°at point A, the second equation, ~. =f, in eqn (I) can be solved for W2 (i.e.
for y) by the implicit function theorem as

W2 = w2(], W, v). (8)

On substituting eqns (7) and (8) into the first equation, F, = 0, in eqn (I), we obtain a single
equation

where

2

G(j, w, v) = L EA;(I/L;-I/.i;)(x~+w-x;) = 0,
;= I

(9)

Thus the original eqns (I) have reduced to a single equation that is much easier to handle.
Such a reduction can be achieved even if the original equations have a large number
of degrees of freedom, to be explained in the next section as the Lyapunov-Schmidt
decomposition.

Regarding the imperfection magnitude e as an independent variable, we put

- ~ ~ °G(f, w, e) = G(f, w, v +ed).

In the Taylor expansion of Garound (j, w, e) = (0,0,0) :

G(j, w,e) = I I L A;jkW]jl,
;=o}=o k=O
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some of the lower order terms vanish. In fact,

Aooo = G(O, 0, 0) = 0. A 100 = oG(O, 0, O)/cw = 0

869

(10)

since (J, w, e) = (0,0,0) corresponds to the critical point for the perfect system. We also see

Aolo = 0, A200 = 0, A300 =1= 0, A 110 =1= 0. (II)

The lowest order term in e, which governs the imperfection sensitivity as we will see later,
is computed from eqn (9) as

where in our example,

Aool = oG/oe = (oGjov) 4, (12)

oGjiJv = EA(0.03162, 0.02901, 0.03162, -0.02901, -0.06325,0,

-0.04853/EA,0.04853(EA)T. (13)

The following three-term approximation turns out to be sufficient for our purpose:

(14)

from which we obtain

The critical point (ie, w) of the imperfect system is determined by

G = 0, oGjow = 0.

(15)

(16)

On substituting eqns (14) and (15) into eqn (16) and eliminating w, we obtain eqn (3) with

On the right-hand side of this equation, Anol alone is a function of d. Hence the
maximum of C(d) with respect to d is achieved by d that maximizes IAood under the
constraint (4). Using the expression (12) for Aool> we see that such d is parallel to
W-I(oGjov), Le.

d = - W-I(oGjov)ja, (17)

or its negative, where IX is a positive scalar defined in such a manner that eqn (4) is satisfied.
By substituting eqns (5) and (13) into eqn (17), we obtain the critical imperfection pattern
d for our example problem:

d =(-0.28404, -0.26061, -0.28404, 0.26061 ,0.56812, 0,0.43592EA, -0.43592EA)T.
(18)

Thus the critical imperfection pattern d has been computed by referring only to Aool
in eqn (12). The other coefficients, such as A'300 and A 110. which appeared in the derivation,
need not be evaluated.

3. THEORY

A method for determining the worst initial imperfection against structures is introduced
in this section. We consider geometrically non-linear equilibrium equations of a structure
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under proportional loadings
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j' fo = F(u, v), (19)

whereje91 1 indicates the loading parameter ({jll is the one-dimensional real space). foe~fl
is a constant loading pattern vector, U e 9lfl is the nodal displacement vector. vE .1iP the
imperfection parameter vector, F E9In is sufficiently smooth (e.g. analytic) non-linear func­
tion in u and v; n is the number of degrees of freedom and p the number of imperfection
parameters. Note that the imperfection parameters are regarded as independent variables.
Solutions of these equilibrium equations, which consist of U; u) E JIll X fJIIfl satisfying eqn
(19), make up equilibrium paths. These paths and critical points (f, u,.) are determined as
functions in the imperfections v.

Remark 3.1. We consider only proportional loading here, though more general loadings
described by

which involve the loading parameter jimpiicitly, can be implemented by replacing fo with
of*/iJjin the present analysis. 0

We consider a critical point (fe°, u~) of the perfect system with v = yO that governs its
load-bearing capacity, where VO denotes the imperfection parameter vector for the perfect
system; the Jacobian J ofF, known as the tangent-stiffness matrix, is singular at U;o, u,o. yO):

where

(OF)J = J(f, u, v) = [Jjj ] = ~ .
OUj

For an imperfect structure described by imperfection parameter v, the critical point moves
to (fe, uc ), which is determined similarly by eqn (19) and

(20)

We write

fc =C+j;·,

where};, is the increment of the criticalloadfe.
The imperfection is expressed in terms of the increment of v from the perfect state yO:

ed = V-yO

with an imperfection pattern vector d normalized as

(21)

(22)

where W is a positive definite matrix to be specified in accordance with the design principle
to be employed and e is the magnitude of imperfection.

We formulate the problem of finding the critical imperfection as that of finding the
imperfection pattern vector d that minimizes critical loadsfc (or};,) under the conditions of
egns (19), (20) and (22).

Remark 3.2. As is evident from our problem formulation above, we focus solely on
the sensitivity off on the imperfections. In practical applications. however. other aspects
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of design demands, such as the allowable deformation limit, are equally important. The
formulation and the implementation of these issues will require further studies. 0

Usually critical points of structures are divided into either simple or multiple critical ones
according to the rank deficiency of J. Hereafter we assume that (fc0, u~) is a simple critical
point of the perfect system; that is, the rank of J equals n-1 at (f, u, v) = (fc0, u~, yO). Then
there exists a unique vector ~ with the properties

Also exists a vector 'I, unique up to a scalar multiple, such that

J'I =O. (23)

Furthermore, we fix an arbitrary basis {'I .. '12"", 'In} of f:Jfn such that'll =". Then u can
be expressed uniquely as

n

U = U~+Wf1+ L Wj'lj
j= 2

and the nodal displacement is described by w = (Wh W2,"" Wn)T, where W = WI'

Remark 3.3. In the special case with J being symmetric, as in finite-element analysis,
the distinguished vectors ~ and 'I as well as the basis of 9l" above can be associated with
the eigenvectors of J. Namely, the orthogonal eigenvector matrix

which is made up of eigenvectors 'Ii of J, diagonalizes J:

where AI denotes the ith eigenvalue of J: J'II = AI'II (i = 1,2, ... , n). It may be assumed that
Al =0 and Ai:FO (i=2,3, ... ,n). Then ~='1='11 and {'1h'2, ... ,'1n} is an orthogonal
basis of 9l". 0

We now reduce the whole system of equations to a single equation in the variable w
by means of the Lyapunov-Schmidt decomposition (e.g. Sattinger, 1979; Golubitsky and
Schaeffer, 1985) of eqn (19) at (~, u~). If we express the loading parameter fin terms of
its incrementJfrom~as

f=~+J,

(J, w) = (0,0) corresponds to the critical point of the perfect structure. We employ the
projection matrices ~~T and In-~~T, where In denotes the unit matrix of order n. On
premultiplying eqn (19) with these matrices and using the new variablesJand w, we arrive
at the equations for the null space

(24)

and those for the rank space

(In-~~T)fo~+h-(In-~~T)F(U~+Wf1+.± Wj'lj, v) = O. (25)
J- 2

The derivatives of eqn (25) with respect to Wj are computed as

(In - ~~T)J'Ij = JI'j, j = 2, 3, ... ,n.
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Because 'I I, '12, ... , 'In are linearly independent and eqn (23) holds, these derivatives are also
linearly independent and hence eqn (25) can be solved with the use of the implicit function
theorem as

IIi = wj(j, w, v), ) = 2,3, ... , n.

On substituting this into eqn (24) and noting that ~ i= 0, we obtain a single equation

which is known as the bifurcation equation if v = va.
We hereby regard the imperfection magnitude 8 as an independent variable in eqn (26)

and put

As assumed earlier, F; (i = 1,2, ... , n) are sufficiently smooth and so is the function
G(j, w, 8). We may then grasp the essential nature of eqn (26) by expanding G into a
power series involving appropriate number of terms (see Iooss and Joseph, 1981):

where

G(j, W,8) = L: L: L AijkwjJl,
i=O i=O k=O

I oGi+j+k I
A k = A Ok (d) = . ----,;------,-

IJ IJ ., "k' :l i:lh:l k
I.) . . vW VJ l-8 (j.....E) = (0.0.0)

(27)

The coefficients AUk (k ~ I) are functions of d but such is not the case for Aijo . Since
(J, w, 8) = (0,0,0) corresponds to the critical point from the perfect system, we have

A ooo = 0, A 100 = 0, A olo = ~Tfo. (28)

The lowest order term in 8, which governs the imperfection sensitivity as we will see
later, is computed from eqn (26) as

where

oG T
A OOI = a; = -~ Bd,

(OF)B=[Bij]= ov;, i=I,2, ... ,n,)=1,2, ... ,p,

(29)

will be called the imperfection sensitivity matrix; B is real but neither square nor symmetric.
We assume A OOI :1= 0 in the following, since A ool = 0 means that the effect of imperfections
is of the second or higher order.

Note that the condition (20) for a critical point for the whole equilibrium equations
reduces to oG/ow = 0 for the bifurcation equation. At a critical point of an imperfect
structure, (j, w) satisfies

G = 0, :~ = o. (30)
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Fig. 3. Classification of simple critical points.

As shown in Fig. 3, simple critical points are classified into the following major typeS:
limit points, asymmetric bifurcation points, stable- and unstable-symmetric bifurcation
points. A critical point is said to be of mth order if

A ooo = A 100 = ... = Am- I.OO = 0, A moo =F O.

Critical points are assumed to be non-degenerate in this section, that is, A 200 =F 0 for a limit
point, and A 11 0 - 4A 200A 020 > 0 for a bifurcation point.

The solution of eqn (30) is given asymptotically for e small as follows according to the
above classification (see the Appendix for the derivation).

(i) For a limit point,

2' -Aool
JC~-A--e.

010

(ii) For an asymmetric bifurcation point of order two,

(31)

(32)

where sign (.) denotes the sign of the variable in the parentheses. Critical loads exist for
the imperfect system only if the sign of imperfection magnitude e coincides with that of
A 200•

(iii) For a symmetric bifurcation point of odd order m (~3),

I
A II-11mJ, - -m A1/m ~ aI-lIm

,,- A
llo

mOO m-l .

(iv) For an asymmetric bifurcation point ofeven order m (~4),

+m IA II-11
mj;,~A- IAmoolllm ~l {sign (Amoo)e}I-llm.

110 m-

(33)

(34)
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Simple bifurcation points of order greater than three are rare in structures, though we
included this case here for theoretical completeness.

On the right-hand sides of eqns (31), (32), (33) and (34), Aool alone is a function of d.
Hence the maximum of Iii with respect to d is achieved by d that maximizes IAoMI. In
view ofeqn (29) we see that IA 00 I I, and hence Ill, is maximized under constraint (22) when
d is chosen to be parallel to W- 1BT,; that is,

(35)

where

(36)

For this critical imperfection pattern, Aool equals

A oo ! == IX> 0 (37)

by eqn (29). It is to be noted that the critical imperfection pattern is given by eqn (35)
irrespective of the type of simple critical points.

For a limit point, substituting eqn (37) into eqn (31) and using eqn (28), we obtain the
first-order approximation of.l as

(38)

where Aolo == ~Tfo > O. This shows that the critical load increment is linearly proportional
to &. The capacity Ie deteriorates for positive e but increases for negative e, as shown in
Fig.4(a).

(a) (b)

f f secondary
branches

~----------IIO'W

---+-",-

s<O

s>O

(c) (d)

ff

II'L.._--===c::.=.._--..... w w
Fig. 4. Effects of & on simple critical points. (a) Limit point, (b) asymmetric bifurcation point.

(c) unstable-symmetric bifurcation point, (d) stable-symmetric bifurcation point.
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For a bifurcation point, the branches for an imperfect system consist of a pair of a
primary (natural) branch and a secondary (complementary) branch (see Fig. 4). Only the
primary branch which is encountered in a natural loading sequence starting from / =0 is
of physical and practical importance.

For an asymmetric bifurcation point, the primary branch ofan imperfect system either
has a limit (maximum) point or has no critical point according to whether e· A lOO is positive
or negative. Only the former case is of physical and engineering importance, but the sign
of e related to this case cannot be known a priori unless A 200 is computed at a tedious cost.
In actual analysis, we may trace the primary paths with e both positive and negative instead
of computing A 200•

For an unstable-symmetric bifurcation point, at which AmooA 110> 0, a primary branch
has a limit (maximum) point of/that governs the load-bearing capacity. The capacity fc is
reduced for both positive and negative e. [Note: for m = 3, this criterion for stability based
on the sign of A 300A 110 agrees with that given by Thompson and Hunt (1973) though this
may not be apparent.]

For a stable-symmetric bifurcation point, at which AmooA 110 < 0, a limit (minimum)
point of/exists on the secondary branch of an imperfect system. The primary branch of
an imperfect system, which is constantly rising, is stable in the neighborhood of the
bifurcation point of the perfect system. Thus the critical imperfection pattern computed by
our method does not seem to have direct practical importance in this case. See also Remark
3.5 below.

In practice, the imperfection parameters are often divided into different categories so
as to implement various kinds of imperfections with diversified physical properties. Then
we partition the parameters into N categories,

v = (vT,vI, ... ,V1)T

and accordingly put

VO = (VOlT, V02T, ••• , VNOT)T, d - (dT d T dT)T B - [B B B ]- I, 2"", N, - " h'''' N'

Note that d and B are decomposed compatibly with the definition of v. The imperfection
patterns dk (k = 1,2, ... , N) are defined as

edk=Vk-v2, k= 1,2, ... ,N,

and normalized as

All results obtained above for one category of imperfections apply to each category, and
the critical imperfection pattern for each category is given by

(39)

where

The variable ~k represents the influence of the imperfection in the kth category to the
critical load increment lc; the kth category has significant or insignificant influence on j;,
according to whether a.k is large or small in value.

For a limit point,j;, is calculated from eqn (38) as a superposition of the effects from
the categories:

(40)
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Remark 3.4. In our problem formulation we have assumed that the weight matrices
Wk (k = L ... , N) are given a priori. From the mathematical point of view. th~se matrices
may be arbitrarily chosen as long as they are positive definite. The choice of the weight
matrices should reflect the design principle and the technological constraints. For example,
Wk may be chosen "small" if the imperfection Vk in the kth category is expected to be small
for some technological reasons. Not surprisingly the resulting critical imperfection vectors
dk are substantially affected by the choice of Wk ; note, however. that Bk and ~ in eqn (39)
are independent of Wk. 0

Remark 3.5. It would be in order here to mention the theory of universal unfolding
due to Golubitsky and Schaeffer (1985). The theory identifies those imperfections which
lead to qualitatively different bifurcation phenomena.

Recall that we have obtained a single equation (26) which describes the local behavior
around the critical point U;o, u2, yo), and suppose, for concreteness, that this point is a
stable-symmetric bifurcation point. According to the theory, all the qualitatively different
imperfect bifurcation diagrams are described by a two-parameter family of imperfections,
called a universal unfolding. For example, the family of

parameterized by (P h (2) is qualified as such. Note (P j, (2) = (0,0) corresponds to the
perfect system. The theory says that G in eqn (27) is obtained from U in the sense that G
factors through U [see Golubitsky and Schaeffer (1985) for the precise meaning]. However,
this result does not seem to have a direct application in the present analysis of critical
imperfections.

Instead we will make use of this result to explain a subtle point of our formulation of
the critical imperfection. It is known that the primary branch of U(J, w. PI. P:) = 0 has a
kink (i.e. a pair of maximal and minimal limit points) if (P I. (2) belongs to the region

In our problem formulation we have fixed the direction d of imperfection v = vo+ed
as in eqn (21) and considered the asymptotic behavior as lei tends to O. For the problem
described by U, we put (P h (2) = e(d" d2) and let lei tend to O. It is easy to see that for any
fixed (d"d2), (PhP2) lies outside of the region K if lei is sufficiently small. This explains
why the primary branch with a kink has been ignored in our analysis. 0

Remark 3.6. In correspondence to the change);. in load-bearing capacity given in eqns
(31) to (34), the magnitude of the change in displacement uc -u2 is computed from eqn (30)
as being the order of e if m = I, and of e 11m if m ;?; 2; when m ;?; 3, this is larger in order
than);.. 0

4. NUMERICAL EXAMPLES

Case studies on simple structures with various types of simple critical points are
performed by means of the proposed method for determining the worst imperfection.
Remember that the critical imperfection pattern d is given by eqn (35) regardless of types
of points, whereas imperfection sensitivity varies with types. In these examples, we shall
deal with proportional loading problems with symmetric Jacobian matrices, which are fairly
tractable and conventional as explained in Remarks 3.1 and 3.3.

Limit point and unstable-symmetric bifurcation point
Figure I shows the shallow arch (a) whose load-bearing capacity is governed by a limit

point and the non-shallow one (b) by an unstable-symmetric bifurcation point. The locations
of the nodes and the sectional and material properties shown in (a) and (b) denote their
perfect cases.

Equilibrium equations under a vertical load f are given by eqn (I) in Section 2.
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Imperfection parameter vector is chosen to be

v= (vT, vI, vI, vt v1Y,

where

In the perfect cases

/) {( -1, .1,1,1,0,0, EA, EA)T for the shallow arch
v == T h( - 1,3, 1,3,0,0, EA, EA) for the non-shallow arc .

We set
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(41)

The tangent-stiffness matrix is given byeqn (6). Eigenvalues ofJ are computed as

The smaller eigenvalue ..1. 1 is relevant to the critical point determining the load-bearing
capacity, and its associated eigenvector is

Equation (1) of the perfect shallow arch yields its equilibrium path (fversus y curve)
shown in Fig. 5 by a solid line. The load-bearing capacity of this path is governed by a limit
point B, where ~ =" =(0, l)T and (.f1,x~,YcO)= (0. I8740EA, 0,0.49018).

We computed the critical imperfection pattern vector d from eqn (39) with the use of
eqn (41):

d = (- 1/)2, - 1/)2,1/)2, -1/j2,O, l, -EA, -EA)T. (42)

This imperfection makes the arch less flat for e < 0, thereby enhancing its vertical stiffness
against snap-through-type collapse, and for e > 0, it makes the arch even flatter and reduces
the stiffness. The imperfection pattern theoretically obtained here, therefore, is sound
through physical viewpoints as well. Broken lines in Fig. 5 show the equilibrium paths

;;j
"-.... 0.3 ............................

'" .....
Q 1/ "

S II ......- ...-..... "
I"'" '\

.,J I I/' B', \
C3 0.2 I II ,- .......... , \ 2"-0.1
~ I I ",'" _- -........... ,
~ / ,/.,/ ',\, \
- , I /.;.- ,,~ \
> I I /.;.- ..........--.-.......... ":0.. \ 1t--0.05
Q I I .tv ,/ " ,,~ \
~ 0.1/ I ~~v /" ......_-..-..... ..... ~~ a.-O.Ol
:l II IiV/1 ,/' ..........., " ~ It-O

i
ii'! /' ..... ,~
,I/" "It-O.Ol

o I II ','. a-0.05
z I ..... a-O.l

o 0.2 0.4 0.' 0.8 1.0
VERTICAL DISPLACEMENT OF NODE 3. y

Fig. 5.fversus)' curves for the shallow arch with and without imperfections (limit point).
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computed for the pattern d in eqn (42) with imperfection magnitudes of e = ± 0.0 I, ± 0.05
and ±0.1.

The increment,l. ofJ:. associated with d of eqn (42) is computed from eqn (40) with
(41) as

(43)

where the '1.k (k ::= I. 2..... 5), denoting the influence of the imperfection in the kth category
onj;., are

('1.1' ::<2, '1.3, IX4' '1.5) = EA(0.25491, 0.25491, 0.36050, 0.09370, 0.09370).

Since IX3 is the greatest among '1.b the imperfection of (X3,Y3) reducesj;. most rapidly. The
imperfections of EA 1 and EA 2 with the smallest rJ.b in contrast, are least influential.

Figure 6 shows the interrelationship between the normalized load-bearing capacity
/c/J:0 and the magnitude of imperfection e. The solid line denotes the critical loads estimated
theoretically from eqn (43), while the closed circles (e) denote those computed from eqn
(I) for the imperfections. The estimation correlates well with the critical loads of imperfect
arches, although the discrepancy enlarges as e increases due to the approximation errors in
the incremental eqn (43), which includes only the first-order term.

For the non-shallow arch, we obtained equilibrium paths (j versus x curves) in Fig.
2. As we have described in Section 2, the paths consist of a main (trivial) path and a pair
of bifurcation paths branching at the simple unstable-symmetric bifurcation point A. The
critical eigenvector at A is ~ = '1 = (I,O)T and (J:°,x:,y:) = (0.24776EA, 0, 0.44735). The
critical imperfection pattern is computed from eqn (39) as

d = (-0.73685, -0.67606, -0.73685,0.67606, 1,0,EA, -EA)T, (44)

which imbalances horizontal stiffness and hence triggers buckling. The dashed lines in Fig.
2 denote the paths computed for d of eqn (44) for e = ±0.01, ±0.05 and ±O. I. Note that
d of eqn (44) computed for the five categories of weight matrices of eqn (41) is different
from d of eqn (I 8) computed for the one category of weight matrix of eqn (5). The weight
matrices and categories, which affect greatly the resulting critical imperfection pattern, must
be chosen on the basis of sound engineering judgements.

1.5

0.5

• critical loads

-0.1 -0.05 o 0.05 0.1

IMPERFECTION MAGNITUDE, 2

Fig. 6.f.jj;° versus s relationship for the shallow arch (limit point).
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0.5 • : proposed method

o : white noise
imperfection

-0.1 -0.05 o 0.05 0.1

IMPERFECTION MAGNITUDE, E

Fig. 7.!:/J: versus 8 relationship for the non-shallow arch (unstable-symmetric bifurcation point).

The increment!c offc related to d of (44) is computed from eqn (33):

(45)

with a positive constant C independent of 6 and

(C( I, C(2' 1X3' C(4' IXs) =EA(0.04292, 0.04292, 0.06325, 0.04853, 0.04853).

Since 1X3 is the greatest among C(k> the imperfection of (X3,Y3) has the greatest influence on
!C.

Figure 7 shows thefcl!: versus 6 relationship. The open circles (0) indicatefc computed
from eqns (I) for imperfections chosen based on white noise, and the closed circles (.) for
the critical imperfection in eqn (44) by the proposed method. The latterfc values are smaller
than the former for the same imperfection magnitude 6; this assesses the validity of this
method. The critical load fc computed by the method decreases as theoretically predicted
in eqn (45), in accordance with the two-thirds power law of Koiter (1945).

The influence of the X3 and Y3 values on the load-bearing capacity of the non-shallow
arch was investigated by changing their values in the ranges -0.5 ~ X3 ~ 0.5 and
-0.5 ~ Y3 ~ 0.5 at a fine mesh with other imperfections kept fixed. Figure 8 shows the

0.5o

o

-0.5 ,...------.,-..--~-------.

........ It'

........ tii\
........ «. CJ

IMPERFECTION PARAMETER x 3

Fig. 8. Contours oflc as a function of X3 and Y3 for the non-shallow arch.
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0.5 r--------r-~----'7'"'I

-0.5-1.0
1.5 ......_-'-__---":.-L-_-'-_-'-_l-.J
-1.5

IMPERFECTION PARAMETER XI

Fig. 9. Contours off. as a function of x, and Y, for the shallow arch.

contour lines of !C. values and the directions of the worst imperfection computed by eqn
(35). The numerals at the lines denote the Ie values and the arrows indicate the worst
direction of (dX3' dY3) at each point (X3,Y3)' The center (X3,Y3) = (0,0) of this figure
corresponds to the perfect non-shallow arch; the solid (respectively broken) arrows indicate
that the load-bearing capacity is governed by a limit (respectively bifurcation) point.

Figure 9 shows the case of the shallow arch for various values of (XhY')' The center
(XhY') = (-I, I) of this figure is associated with the perfect shallow arch. In Figs 8 and 9,
the theoretically computed imperfection vectors are orthogonal to the contour lines, i.e.
directed toward the steepest decline ofIe; this verifies the validity of our method.

Asymmetric bifurcation point
Consider the propped cantilever of Fig. 10 comprising a truss member, simply sup­

ported at a rigid foundation and supported by horizontal and vertical springs. The equi­
librium equations under a verticalloadfare

(
0) = (EA(I/L-I/~)(X-Xl)+Fsx)

f I EA(l/L-I/L)(y-y.)+Fsy ,
(46)

(a) (b)

initial

(0.0) 6--.,;x~MMf'-'-----L:~

y

displaced

(O,ll (XI,Y I )

Fig. 10. Propped cantilever. (a) perfect system, (b) imperfect system.
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L == {(x! _XI)! +(Y2 - YI)2} 1/2; l = {(X-XI)2+(y- YI)2} 1/2;

F.x == EA{fJl +fJkC-X2)jL+fJJ(X-X2)2IL2}; Fsy =EAfJ4(Y-Y2)IL,
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and (x,Y) is the location of node 2 after displacement; and F•.< and Fsy are the horizontal
and the vertical force exerted by the springs, respectively.

The imperfection parameter vector is

where

In the perfect case, we have

VO == (0, 1, 0,0, 0, 1, 1, 1,)T •

We set WI = W2 = 12 ; WJ =14 ,

The equilibrium eqns (46) give the solution paths for the perfect cantilever as

{

X == 0, flEA =2y, Y < 1:

main path,
y == 1-{1/(x+2)2 _X2}1/2, fjEA == I +x{1/(x+2)2_X2}1/2, x> -2:

bifurcation paths,

and those for the imperfect cantilever as

(47)

(48)

Y = YI -Ix-xII' R(x),

flEA = fJ4(YI-Y2)jL+{Fsx(x) sign (x-xl)/EA-fJ4Ix-xIIIL}R(x),

F•..(x)/{EA(x-xl)} + IlL> 0, (49)

where

Figure 11 shows f versus X curves computed for the perfect cantilever, The curves
consist of a main path and a pair of bifurcation paths branching at a simple asymmetric
bifurcation point C. The critical eigenvector at C is ~ ==" == (l,O)T and <.r:,x~,y~) ==
(EA,O, 1/2). The critical imperfection pattern d computed by eqn (39) is

d=(-l,O, 1,0, -l,O,O,O)T.

From eqn (32) the increment.fc offc related to d is

(50)

(51)

where C is a positive constant and Oft = EA (k == 1,2,3). The three categories of imper­
fections, having the same Oft values, make the same asymptotic contributions to the critical
load increment.fc.

The dashed lines in Fig. 11 denote the paths computed from eqns (49) for d in eqn (50)
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Fig. II. f versus x curves for the propped cantilever with VO in eqn (47) (asymmetric biiurcation
point).

for e = ± 0.005, ± 0.0 I, ± 0.05 and ± 0.1. Each of the two paths with G = - 0.005 has a
limit point in the vicinity of point C. This agrees with (51) which implies the existence of
two neighboring limit points with opposite signs of .Ie. However, only one neighboring
limit point was observed for G = -0.01 and no such points were observed for the paths
with G = - 0.05 and - 0.1. This absence of limit points is due to the global non-linearity of
the bifurcation behavior of the propped cantilever. Note that the proposed method focuses
on the local asymptotic aspects of the bifurcation behavior and is expected to hold for
sufficiently small G, such as G = - 0.005 in this case.

Stable-symmetric bifurcation point
The propped cantilever with different spring properties is investigated. We choose

VO = (0,1, 0,0, 0,1,0,2)T

as the perfect structure. The equilibrium eqns (46) yield the solution paths:

(52)

{

X = 0, flEA = 3y, y < I:
y = 1_(~_x2)'/2, flEA = 2_(~_X2)112:

main path

bifurcation paths
(53)

for v = va, and the paths of eqns (49) for the imperfect structures.
Figure 12 showsfversus x curves for the perfect cantilever with VO in eqn (52). The

curves consist of a main (trivial) path and a pair of bifurcation paths, which branch from
the main path at a simple stable-symmetric bifurcation point D. The critical eigenvector at
o is ~ =" = (l,O? and <.r:,x~,y~)= (3EAI2,0, 1/2). The critical imperfection pattern d
computed by eqn (39) is

d = (- 1,0, 1,0, - 1,0,0,0)T. (54)

The dashed lines in Fig. 12 denote the paths computed from eqn (49) with VO in eqn (52),
with the imperfection pattern in eqn (54), and with G = ±0.01, ±0.05 and ±O.l.

From eqn (33) the incrementlc of the load-bearing capacity Ie related to d of egn (54)
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Fig. 12. f versus x curves for the propped cantilever with VO in eqn (52) (stable-symmetric bifurcation
point).
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with a positive constant C and IXk := EA (k := 1.2.3). Again. the three categories of imper­
fections have the same asymptotic influence on/c.

5. CONCLUDING REMARKS

A method is proposed for determining the critical (or worst) initial imperfection of
structures. The first halfof this paper is devoted to the theory of the method and the second
half to its illustration with the use of simple example structures.

The critical imperfection pattern vector at a simple critical point is independent of the
type of the point. being given by

d:= - W- 1BT~/IX,

where ~ is the critical eigenmode. B is the imperfection sensitivity matrix. and W is a
weighting matrix.

The initial imperfections are divided into categories so as to implement various kinds
of imperfections with diversified physical properties. The contribution of each category to
the critical load increment..l is characterized quantitatively by the variable IXk:

With the use of IXkt one can identify the imperfection parameters that greatly affect the
critical loads. All kinds of imperfections can readily be implemented in the formulation,
unlike most ofthe other techniques hitherto proposed for determining critical imperfections.

The types of critical points substantially influence the sensitivity of the critical load
increment..l to the imperfection magnitude 8. This conforms with the study of Thompson
and Hunt (1973), which considered the sensitivity of a system with a potential energy
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function to a few imperfection parameters. Our method is more versatile than their per­
turbation method in that it is applicable to a system which mayor may not have a potential
function and may involve a large number of imperfection parameters.

The method was applied to simple truss structures to assess its validity and usability.
Simple calculations enabled us to arrive at the most favorable or unfavorable imper­
fections. The most influential imperfection parameter on critical loads was identified. The
imperfections selected in this manner were physically feasible and, at the same time, altered
the critical loads as predicted by the theory.

In this paper, we disregarded double (multiple) critical points in favor of simple ones.
For double bifurcation points which arise due to geometric symmetry of systems. the
determination of the critical imperfection pattern vector will require the concept of group
symmetry (see Sattinger, 1979, 1980) and will be a topic of future research; see Murota and
Ikeda (1990).

For customary cases where the tangent-stiffness matrix is symmetric, the critical imper­
fection patterns are expected to be calculated compatibly with finite-element analyses based
on matrix-type formulation. The computational details will be reported in a forthcoming
paper by Ikeda and Murota (1990) with applications to a practical large-scaled truss
structure.
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APPENDIX

The solutions ofeqns (30) are obtained in this Appendix for various kinds ofsimple critical points. Although
oin eqn (27) may be expressed in terms of an infinite power series of w, it turns out to be suffi~~ent fo~ deriving
the first-order approximation to consider up to the mth order terms of w for an mth order cnncal pomt. Then
the mth order approximation to C is given by

m

0::::: Om =0 L A;wi
,

j"" 0



where
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Ai = I I Ajjkfr!'.
j_O ._0

885

Elimination of w from eqns (30) results in the condition that the discriminant of Gm (as a polynomial in w),
or alternatively, the resultant of Gm and oGm/ow, should vanish. This condition can be written as (see, e.g. van
der Waerden, 1955)

Ao Al Am

}m-IAo AI Am

A o Al Am
Dm = =0. (AI)

AI 2A 2 mA..

}mAl 2A 2 mAm

A, 2A 2 rnA,.,

Note that Dm is a function in Il and], and that/is to be determined as a function in Il by the equation DM = O.

Limit point
For a non-degenerate limit point (AolO -:1= 0, A 200 -:1= 0), the second-order approximation G2 of the bifurcation

equation is employed:

in which

A o = Aoo,Il+Ao,o/+h.o.t.;

AI = A,ols+Allo/+h.o.t.;

A2 = A200+A2olll+A2Io/+h.o.t.

Then D 2 ofeqn (AI) is evaluated to

D2 = (4A oA 2-ADA2 =4(Aoolll+Ao,o/)A~oo+h.o.t.

Because Aolo #< 0 and A200 #< 0, this equation yields

Simple asymmetric bifurcation point oforder two
For a simple asymmetric bifurcation point oforder two, for which Am'" 0 and A200 #< 0, the condition (AI)

with m = 2 becomes

where

A o = AooIIl+Ao20P+Aoll/s+h.o.t.;

Al = A,olll+Allo/+h.o.t.;

A 2 = A 200 +h.o.t.

With the use ofeqns (A3), (A2) becomes

(A2)

(A3)

(A4)

where the non-degeneracy condition A110-4A20oA020 > 0 was employed. With reference to eqn (37) and this
condition, eqn (A4) yields

l. ~ ±{4IA2ooIAoo.J(A~1O -4A2ooAo20)} l/2{sign (A 200)e} 1,2.

Simple symmetric bifurcation point oforder three
For a symmetric bifurcation point of order three, AlOO is the first non-vanishing term of AMoo (m = 1,2, ...).

The condition (AI) with m = 3 is evaluated as

(A5)
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in which
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A o =' Aoo,e+AolO!l+Aol J'e+h.o.I.;

AI Alo!e+A"o!+h.o.I.:

Al = AlOle+AlIJ+h.o.I.;

A.1 == A.1oo+h.o.l . (A6)

Substituting (A6) into (A5) and noting that A 110 # 0 (due to the non-degeneracy condition), we arrive at

Simple bifim'alion point oforder grealer Ihan Ihree
For a simple bifurcation point of order greater than three, it can be proved that

where

A o == Aoo,e +Aolo]l+h.o.l.;

A, == A,ole+Allo!+h.o.l.;

Am == Amoo+h.o.l.

Hence we have

for even m (;;0 4) and

IA 1'·lmh ~ -m A,/m ~ 6 1- I -m

. i: '" A 110 mOO m- I

for odd m (;;03).


